SEntFiN 1.0: Entity-aware sentiment analysis for financial news
Ankur Sinha
Production and Quantitative Methods, IIM, Ahmedabad, India
Search for more papers by this authorCorresponding Author
Satishwar Kedas
Production and Quantitative Methods, IIM, Ahmedabad, India
Correspondence
Satishwar Kedas, Production and Quantitative Methods, IIM, Ahmedabad, India.
Email: [email protected]
Search for more papers by this authorRishu Kumar
Production and Quantitative Methods, IIM, Ahmedabad, India
Search for more papers by this authorPekka Malo
Department of Information and Service Economy, Alto University, Espoo, Finland
Search for more papers by this authorAnkur Sinha
Production and Quantitative Methods, IIM, Ahmedabad, India
Search for more papers by this authorCorresponding Author
Satishwar Kedas
Production and Quantitative Methods, IIM, Ahmedabad, India
Correspondence
Satishwar Kedas, Production and Quantitative Methods, IIM, Ahmedabad, India.
Email: [email protected]
Search for more papers by this authorRishu Kumar
Production and Quantitative Methods, IIM, Ahmedabad, India
Search for more papers by this authorPekka Malo
Department of Information and Service Economy, Alto University, Espoo, Finland
Search for more papers by this authorFunding information: India Gold Policy Centre, Grant/Award Number: 9209100:1815012
Abstract
Fine-grained financial sentiment analysis on news headlines is a challenging task requiring human-annotated datasets to achieve high performance. Limited studies have tried to address the sentiment extraction task in a setting where multiple entities are present in a news headline. In an effort to further research in this area, we make publicly available SEntFiN 1.0, a human-annotated dataset of 10,753 news headlines with entity-sentiment annotations, of which 2,847 headlines contain multiple entities, often with conflicting sentiments. We augment our dataset with a database of over 1,000 financial entities and their various representations in news media amounting to over 5,000 phrases. We propose a framework that enables the extraction of entity-relevant sentiments using a feature-based approach rather than an expression-based approach. For sentiment extraction, we utilize 12 different learning schemes utilizing lexicon-based and pretrained sentence representations and five classification approaches. Our experiments indicate that lexicon-based N-gram ensembles are above par with pretrained word embedding schemes such as GloVe. Overall, RoBERTa and finBERT (domain-specific BERT) achieve the highest average accuracy of 94.29% and F1-score of 93.27%. Further, using over 210,000 entity-sentiment predictions, we validate the economic effect of sentiments on aggregate market movements over a long duration.
REFERENCES
- Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M. & Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.
- Antweiler, W., & Frank, M. Z. (2004). Is all that talk just noise? The information content of internet stock message boards. Journal of Finance, 59(3), 1259–1294.
- Araci, D. (2019). Finbert: Financial sentiment analysis with pre-trained language models. arXiv preprint arXiv:1908.10063.
- Baccianella, S., Esuli, A., & Sebastiani, F. (2010). Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10) (Vol. 10, pp. 2200–2204). European Language Resources Association.
- Balahur, A., Steinberger, R., Kabadjov, M., Zavarella, V., Van Der Goot, E., Halkia, M., Pouliquen, B., & Belvaeva, J. (2013). Sentiment analysis in the news. arXiv preprint arXiv:1309.6202.
- Breiman, L. (2017). Classification and regression trees. Routledge.
10.1201/9781315139470 Google Scholar
- Bruce, R. F., & Wiebe, J. M. (1999). Recognizing subjectivity: A case study in manual tagging. Natural Language Engineering, 5(2), 187–205.
10.1017/S1351324999002181 Google Scholar
- Cabanski, T., Romberg, J., & Conrad, S. (2017). Hhu at semeval-2017 task 5: Fine-grained sentiment analysis on financial data using machine learning methods. In Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017) (pp. 832–836). Association for Computational Linguistics.
10.18653/v1/S17-2141 Google Scholar
- Cavnar, W. B., & Trenkle, J. M. (1994). N-gram-based text categorization. In Proceedings of SDAIR-94, 3rd annual symposium on document analysis and information retrieval (pp. 161–175).
- Chambers, A. E., & Penman, S. H. (1984). Timeliness of reporting and the stock price reaction to earnings announcements. Journal of Accounting Research, 22(1), 21–47.
- Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785–794). Association for Computing Machinery.
10.1145/2939672.2939785 Google Scholar
- Chinchor, N., & Robinson, P. (1997). MUC-7 named entity task definition. In Proceedings of the 7th conference on message understanding (Vol. 29, pp. 1–21). Association for Computational Linguistics.
- Chollet, F. et al. (2018). Keras: The python deep learning library. Astrophysics Source Code Library, ascl-1806.
- Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
- Cortis, K., Freitas, A., Daudert, T., Huerlimann, M., Zarrouk, M., Handschuh, S., & Davis, B. (2017). Semeval-2017 task 5: Fine-grained sentiment analysis on financial microblogs and news. Association for Computational Linguistics.
- Das, S., & Chen, M. (2001). Yahoo! for Amazon: Extracting market sentiment from stock message boards. In Proceedings of the Asia Pacific Finance Association annual conference (APFA) (Vol. 35, p. 43). Asia Pacific Finance Association.
- Deng, L., & Wiebe, J. (2015). MPQA 3.0: An entity/event-level sentiment corpus. In Proceedings of the 2015 conference of the North American chapter of the association for computational linguistics: Human language technologies (pp. 1323–1328). Association for Computational Linguistics.
10.3115/v1/N15-1146 Google Scholar
- Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
- Ding, X., Liu, B., & Yu, P. S. (2008). A holistic lexicon-based approach to opinion mining. In Proceedings of the 2008 international conference on web search and data mining (pp. 231–240). Association for Computing Machinery.
10.1145/1341531.1341561 Google Scholar
- Ding, X., Zhang, Y., Liu, T., & Duan, J. (2014). Using structured events to predict stock price movement: An empirical investigation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1415–1425). Association for Computational Linguistics.
10.3115/v1/D14-1148 Google Scholar
- Ding, X., Zhang, Y., Liu, T., & Duan, J. (2015). Deep learning for event-driven stock prediction. In Twenty-fourth international joint conference on artificial intelligence. AAAI Press.
- Esuli, A., & Sebastiani, F. (2006). Sentiwordnet: A publicly available lexical resource for opinion mining. In Proceedings of the fifth international conference on language resources and evaluation (LREC'06) (Vol. 6, pp. 417–422). European Language Resources Association (ELRA).
- Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.
- Gao, Z., Feng, A., Song, X., & Wu, X. (2019). Target-dependent sentiment classification with BERT. IEEE Access, 7, 154290–154299.
- Ghosal, D., Bhatnagar, S., Akhtar, M. S., Ekbal, A., & Bhattacharyya, P. (2017). IITP at SemEval-2017 task 5: An ensemble of deep learning and feature based models for financial sentiment analysis. In Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017) (pp. 899–903). Association for Computational Linguistics.
10.18653/v1/S17-2154 Google Scholar
- Goonatilake, R., & Herath, S. (2007). The volatility of the stock market and news. International Research Journal of Finance and Economics, 3(11), 53–65.
- Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18(5–6), 602–610.
- Grishman, R., & Sundheim, B. (1996). Design of the MUC-6 evaluation (Technical Report). Deptartment of Computer Science, New York University.
10.3115/1119018.1119072 Google Scholar
- Hiew, J. Z. G., Huang, X., Mou, H., Li, D., Wu, Q., & Xu, Y. (2019). BERT-based financial sentiment index and LSTM-based stock return predictability. arXiv preprint arXiv:1906.09024.
- Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
- Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. In Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining (pp. 168–177). Association for Computing Machinery.
10.1145/1014052.1014073 Google Scholar
- Kearney, C., & Liu, S. (2014). Textual sentiment in finance: A survey of methods and models. International Review of Financial Analysis, 33, 171–185.
- Kingma, D. P., & Ba, J. (2014). ADAM: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
- Lafferty, J., McCallum, A., & Pereira, F. C. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceeding of the Eighteenth International Conference on Machine Learning, (pp. 282–289). Association for Computing Machinery.
- Lee, R. P., & Chen, Q. (2009). The immediate impact of new product introductions on stock price: The role of firm resources and size. Journal of Product Innovation Management, 26(1), 97–107.
- Li, Q., Wang, T., Li, P., Liu, L., Gong, Q., & Chen, Y. (2014). The effect of news and public mood on stock movements. Information Sciences, 278, 826–840.
- Li, X., Xie, H., Chen, L., Wang, J., & Deng, X. (2014). News impact on stock price return via sentiment analysis. Knowledge-Based Systems, 69, 14–23.
- Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692.
- Loughran, T., & McDonald, B. (2011). When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks. Journal of Finance, 66(1), 35–65.
- Mackenzie, J., Benham, R., Petri, M., Trippas, J. R., Culpepper, J. S., & Moffat, A. (2020). CC-News-En: A large English news corpus. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 3077–3084). ACM.
10.1145/3340531.3412762 Google Scholar
- Maia, M., Handschuh, S., Freitas, A., Davis, B., McDermott, R., Zarrouk, M., & Balahur, A. (2018). WWW'18 open challenge: Financial opinion mining and question answering. In Companion Proceedings of the The Web Conference 2018 (pp. 1941–1942). Association for Computing Machinery.
10.1145/3184558.3192301 Google Scholar
- Malo, P., Sinha, A., Korhonen, P., Wallenius, J., & Takala, P. (2014). Good debt or bad debt: Detecting semantic orientations in economic texts. Journal of the Association for Information Science and Technology, 65(4), 782–796.
- Malo, P., Sinha, A., Takala, P., Ahlgren, O., & Lappalainen, I. (2013). Learning the roles of directional expressions and domain concepts in financial news analysis. In 2013 IEEE 13th international conference on data mining workshops (pp. 945–954). Institute of Electrical and Electronics Engineers (IEEE).
10.1109/ICDMW.2013.36 Google Scholar
- Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., & McClosky, D. (2014). The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System demonstrations (pp. 55–60). Association for Computational Linguistics.
10.3115/v1/P14-5010 Google Scholar
- Mansar, Y., Gatti, L., Ferradans, S., Guerini, M., & Staiano, J. (2017). Fortia-FBK at SemEval-2017 task 5: Bullish or bearish? Inferring sentiment towards brands from financial news headlines. arXiv preprint arXiv:1704.00939.
- Moore, A., & Rayson, P. (2017). Lancaster A at SemEval-2017 Task 5: Evaluation metrics matter: Predicting sentiment from financial news headlines. arXiv preprint arXiv:1705.00571.
- Morck, R., Yeung, B., & Yu, W. (2000). The information content of stock markets: Why do emerging markets have synchronous stock price movements? Journal of Financial Economics, 58(1–2), 215–260.
- Pang, B., Lee, L., et al. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135.
10.1561/1500000011 Google Scholar
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12, 2825–2830.
- Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1532–1543). Association for Computational Linguistics.
10.3115/v1/D14-1162 Google Scholar
- Pivovarova, L., Klami, A., & Yangarber, R. (2018). Benchmarks and models for entity-oriented polarity detection. In Proceedings of the 2018 Conference of the North American chapter of the Association for Computational Linguistics: Human Language Technologies (Vol. 3, pp. 129–136). Association for Computational Linguistics.
10.18653/v1/N18-3016 Google Scholar
- Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Manandhar, S., Al-Smadi, M., Al-Ayyoub, M., Zhao, Y., Qin, B., De Clercq, O., & Hoste, V. (2016). Semeval-2016 task 5: Aspect based sentiment analysis. In International workshop on semantic evaluation (pp. 19–30). Association for Computational Linguistics.
10.18653/v1/S16-1002 Google Scholar
- Qin, D. (2011). Rise of VAR modelling approach. Journal of Economic Surveys, 25(1), 156–174.
- Ranco, G., Aleksovski, D., Caldarelli, G., Grčar, M., & Mozetič, I. (2015). The effects of twitter sentiment on stock price returns. PLoS One, 10(9), e0138441.
- Riloff, E., & Wiebe, J. (2003). Learning extraction patterns for subjective expressions. In Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing (pp. 105–112). Association for Computational Linguistics.
- Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536.
- Sang, E. F., & De Meulder, F. (2003). Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. arXiv preprint cs/0306050.
- Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.
- Schouten, K., & Frasincar, F. (2015). Survey on aspect-level sentiment analysis. IEEE Transactions on Knowledge and Data Engineering, 28(3), 813–830.
- Schumaker, R. P., & Chen, H. (2008). Evaluating a news-aware quantitative trader: The effect of momentum and contrarian stock selection strategies. Journal of the American Society for Information Science and Technology, 59(2), 247–255.
- Schumaker, R. P., & Chen, H. (2009). Textual analysis of stock market prediction using breaking financial news: The azfin text system. ACM Transactions on Information Systems (TOIS), 27(2), 12.
- Seo, Y.-W., Giampapa, J., & Sycara, K. (2004). Financial news analysis for intelligent portfolio management (Technical Report). Carnegie-Mellon University.
10.21236/ADA599073 Google Scholar
- Sinha, A., & Khandait, T. (2021). Impact of news on the commodity market: Dataset and results. In Future of Information and Communication Conference ( pp. 589–601). Springer.
10.1007/978-3-030-73103-8_41 Google Scholar
- Stone, P. J., Dunphy, D. C., & Smith, M. S. (1966). The general inquirer: A computer approach to content analysis. M.I.T. Press.
- Sun, C., Huang, L., & Qiu, X. (2019). Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence. arXiv preprint arXiv:1903.09588.
- Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational Linguistics, 37(2), 267–307.
- Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock market. Journal of Finance, 62(3), 1139–1168.
- Tong, R. M. (2001). An operational system for detecting and tracking opinions in online discussion. In Working notes of the ACM SIGIR 2001 workshop on operational text classification (Vol. 1). Association for Computing Machinery.
- Van de Kauter, M., Breesch, D., & Hoste, V. (2015). Fine-grained analysis of explicit and implicit sentiment in financial news articles. Expert Systems with Applications, 42(11), 4999–5010.
- Van de Kauter, M., Desmet, B., & Hoste, V. (2015). The good, the bad and the implicit: a comprehensive approach to annotating explicit and implicit sentiment. Language Resources and Evaluation, 49(3), 685–720.
- Vapnik, V. (2013). The nature of statistical learning theory. Springer.
- Von Beschwitz, B., Keim, D. B., & Massa, M. (2015). First to “read” the news: News analytics and high frequency trading. In Paris December 2015 finance meeting EUROFIDAI-AFFI. SSRN.
- Wang, B., Huang, H., & Wang, X. (2012). A novel text mining approach to financial time series forecasting. Neurocomputing, 83, 136–145.
- Warner, J. B., Watts, R. L., & Wruck, K. H. (1988). Stock prices and top management changes. Journal of Financial Economics, 20, 461–492.
- Wiebe, J., Wilson, T., & Cardie, C. (2005). Annotating expressions of opinions and emotions in language. Language Resources and Evaluation, 39(2–3), 165–210.
- Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recognizing contextual polarity in phrase-level sentiment analysis. In Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing (pp. 347–354). Association for Computational Linguistics.
- Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac P., Rault T., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M., Lhoest, Q., & Rush, A. (2019). HuggingFace's transformers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771.
- Wysocki, P. D. (1998). Cheap talk on the web: The determinants of postings on stock message boards (Working Paper 98025). University of Michigan Business School.
- Xu, H., Liu, B., Shu, L., & Yu, P. S. (2019). BERT post-training for review reading comprehension and aspect-based sentiment analysis. arXiv preprint arXiv:1904.02232.
- Zhang, W., & Skiena, S. (2010). Trading strategies to exploit blog and news sentiment. In Proceedings of the international AAAI conference on web and social media (Vol. 4). AAAI Press.
10.1609/icwsm.v4i1.14075 Google Scholar